
Testing Methodology
Assignment 2

Unit testing using JUnit
COSC 565/475: Software Engineering I

Fall Semester 2014

Deadline: 25th of November

What is JUnit?
JUnit is a framework for testing parts, or units of your code. In general, these units are
considered to be the methods of each class. JUnit can help you to make sure that each
of your classes work as expected. In unit testing you will usually write one test class for
each of the classes that you want to test. Your test class will often include a test method
for each method implemented by the class being tested. But keep in mind that this is not
always feasible, or necessary. A test case will, and should often touch on more than a
single method. These tests should be written to make it likely that when all the tests
pass, the code is functioning as required.

JUnit with Eclipse
 Run Eclipse IDE. We will create a new workplace project

 so click File -> New -> Project,
 then choose Java and click Next.
 Type in a project name -- for example, ProjectWithJUnit. Click Finish.
 The new project will be generated in your IDE. Let's configure our Eclipse

IDE, so it will add the JUnit library to the build path.
 Click on Project -> Properties, select Java Build Path, Libraries, click Add

External JARs and browse to directory where your JUnit is stored. Pick
junit.jar and click Open.

 You will see that JUnit will appear on your screen in the list of libraries. By
clicking Okay you will force Eclipse to rebuild all build paths.

 To create such a test, right-click on the ProjectWithJUnit title,
 select New -> Other, expand the "Java" selection, and choose JUnit.
 On the right column of the dialog, choose Test Case, then click Next.

Example
public class HelloWorld {
 public String say() { return("Hello World!"); }
}

import junit.framework.TestCase;
public class TestThatWeGetHelloWorldPrompt extends TestCase {
 public TestThatWeGetHelloWorldPrompt(

 String name) {
 super(name);
 }
 public void testSay() {
 HelloWorld hi = new HelloWorld();
 assertEquals("Hello World!", hi.say());
 }
 public static void main(String[] args) {
 junit.textui.TestRunner.run(
 TestThatWeGetHelloWorldPrompt.class);
 }
}

Basic Information
Before you begin, we would like to call your attention to the following conventions:
 A Test Case Class is named [classname]Test.java, where classname is the name of

the class that is tested.
 A Test Case Method is a method of the Test Case Class which is used to test one or

more of the methods of the target class. Test Case Methods are annotated with
@Test to indicate them to JUnit. Cases without @Test will not be noticed by JUnit.

JUnit assertions are used to assert that a condition must be true at some point in the
test method. JUnit has many types of assertions. The following is a selection of the
most commonly used assertions:

_ assertEquals(expected, actual): Assert that expected value is equal to the actual
value. The expected and actual value can be of any type, for example integer, double,
byte, string, char or any Java object. If the expected and actual values are of type
double or oat, you should add a third parameter indicating the delta. It represents the
maximum difference between expected and actual value for which both numbers are
still considered equal.
_ assertTrue(condition): Asserts that the Boolean condition is True.
_ assertFalse(condition): Asserts that the Boolean condition is False.
_ assertNull(object): Asserts that an object is null.
_ assertNotNull(object): Asserts that an object is not null.
_ assertSame(expected object, actual object): Asserts that two variables refer to the
same object.
_ assertNotSame(expected object, actual object): Asserts that two variables do not
refer to the same object.

Whenever an assertion fails, an AssertionError is thrown, which is caught by the JUnit
framework and presented as a red bar, indicating test failure. Assert statements accept
an extra message parameter before the other parameters.

Loading the Project
Download the file bowling.rar from blackboard

In Eclipse, choose File -> New -> Java Project. Give it a name (“Lab1", for instance) and
click Finish.

Running the Test Cases

When you run a test class, JUnit will run each method annotated with @Test separately
and show a green bar if all of them pass, and a red bar if any of them fail. It is important
that anything happening in a test method is independent from the other test methods,
otherwise you risk getting weird results.

Assignment Tasks

 You have been given a template for the bowling class, game class and frame class.

You have to write minimum 60 test cases for the 3 classes.

 First, write test cases for the methods of each class, and then fill in the methods with

code that will make your test cases pass.
 Create GameTest.java
 Create FrameTest.java
 Create BowlingTest.java
 If you run your test cases for GameTest.java, BowlingTest.java, and FrameTest.java

at this point, they should be all pass.
 Write the following test cases for Frame class

o testOneThrow()
o testNeverKnockDownAllThePins()
o testStrike()
o testFrameScore()

 Write the following test cases for GameTest class
o testEmptyGame()
o testOneThrow1()
o testThreeThrows()
o testThreeThrowsStrike()
o testPerfectGame()
o testAllOnesGame()

 Atleast 20 test case should often touch on more than a single method.
 Archive your project folder in zip format and name it FirstName1.LastName1-

FirstName2.LastName2.zip where the first name and last name refers to your name
and your partner's name participating in the assignment.

 Comment your code and comment all the test cases
 Uses 5 different assert statements. The most common assert statement is

assertEquals() which takes at least two arguments. Each JUnit test case (method)

should have at least one of the assert statements listed below, otherwise the test
passes, which can be misleading if you never actually check the value of any data.

 Examine the API for JUnit and add a few additional methods and test cases that use
other Assert class methods, such as assertArrayEquals, assertTrue, assertFalse,
assertNull and fail.

Working independently. Your answers to the questions on this assignment will be individually marked, and must be
your own work. You will be assigned 0 marks for this entire assignment, if any of your answers to individual
questions bears a close resemblance to another student’s submission, or to something previously published on the
internet or elsewhere

Reference
Lab session1: http://www.vogella.com/tutorials/JUnit/article.html
Lab session2: https://courses.cs.washington.edu/courses/cse143/11wi/eclipse-tutorial/junit.shtml
Lab session3: http://www.csc.villanova.edu/~tway/courses/csc4700/s2010/assignments/junit_lab.html

Rubric
Rubric for Assignment 2

Rubric for Assignment 2
Criteria Ratings Pts

Test
Coverage

Tests cover
all edge
cases.
40 pts

Tests cover
most edge
cases.
30 pts

A test suite exists and runs in
JUnit, but doesn't actually
test anything.
20 pts

Tests do not
run in JUnit.
10 pts

No
Tests.
0 pts

40
pts

Code
Correctness

The program
works and meets
all of the
specifications.
40 pts

The program works and
produces the correct
results and displays
them correctly. It also
meets most of the other
specifications.
30 pts

The program
produces
correct results
but does not
display them
correctly.
20 pts

The code
does not
produce
correct
results.
10 pts

No
Code.
0 pts

40
pts

Code
Readability

The code is very well
organized and very
easy to follow.
20pts

The code is readable only by
someone who knows what it
is supposed to be doing.
10pts

The code is poorly
organized and very
difficult to read.
0 pts

2
0pts

Total Points: 100

