
 1

 BOWIE STATE UNIVERSITY
Syllabus

Department of Computer Science

COSC 475 /565 (3 Cr) Software Engineering I

Fall Semester 2016 Course Information

Instructor: Sharad Sharma
Office Location: Computer Science Building Room 317
Phone: 301-860-4502
Email: ssharma@bowiestate.edu
Class Hours: Tuesday: 4:55 PM to 7:25 PM
Office Hours: Tuesday: 12:55 PM to 4:55 PM or by appointment
COURSE WEBSITE: http://www.cs.bowiestate.edu/sharad/software/

COURSE DESCRIPTION

This course introduces the student to major topics in software engineering such as:
requirements specification, analysis and design, testing, project management, and
implementation. Additional topics such as software life cycle models, the Unified
Modeling Language (UML), agile software development techniques, configuration
management, change control, and project documentation will be discussed.

COURSE PREREQUISITE COSC 214 or COSC 504

REQUIRED TEXTS

Somerville, Ian (2001)Addison-Wesley Software Engineering 9th Edition,
Massachusetts: Addison Wesley, ISBN-10: 0137035152, ISBN-13: 978-013703515

PROGRAM OUTCOMES (PO):

This course is required for all computer science major students and has significant
relationship with the following program outcomes:

b. An ability to analyze problem, and identify and define the computing requirements appropriate

to its solution
c. An ability to design, implement, and evaluate a computer-based system, process, component, or

program to meet desired needs
d. Ability to function effectively on teams to accomplish a common goal.
e. An Understanding of professional, ethical, legal, security, and social issues.
f. An Ability to communicate effectively with a range of audience.
h. Recognize of the need for and an ability to engage in continuing professional development.

 2

STUDENT COURSE LEARNING OBJECTIVES (SCLO)

The essential objectives for this course are to:

1. Illustrate proficiency in developing and producing software process artifacts, most
importantly the code and user documentation.

2. Demonstrate and acquire skills that help you work effectively as a member of a
software development team.

3. Describe the software life cycle, roles, artifacts, and activities.

4. Identify and understand the concepts of software "best practices" and when they
apply.

5. Demonstrate that you are able to adapt a process to your needs and select an
appropriate set of best practices that will guide you in completing a software
development project.

STUDENT EXPECTED OUTCOMES

Upon completion of this course, the student will be able to:

1. Define and understand the role and responsibilities of a software engineer
o Instruments: Quiz 1, Assignment1, Exam
o Covers PO (b), (c), (e), and SCLO (1), (2)

2. Define Project management and its role in systems planning, systems analysis,
systems design, systems implementation, and systems support.

o Instruments: Quiz 1, Assignment1, Exam
o Covers PO (b), (c) and SCLO (1), (2), (3)

3. Describe and define a feasibility plan, requirements and design documentation.
o Instruments: Quiz 1, 2, Assignment1
o Covers PO (b), (c) and SCLO (1), (2)

4. Define and perform data modeling and process modeling, and explain why they
are important.

o Instruments: Quiz 2, Exam
o Covers PO (b), (c) and SCLO (1), (2), (4)

5. Design, develop, test, and demonstrate a major piece of software.
o Instruments: Project, Assignment 2
o Covers PO (b), (c), (d), and SCLO (1), (2), (5)

6. Demonstrate the fundamental principles of software engineering. Be able to
identify and describe the software life cycle, roles, artifacts, and activities.

o Instruments: Quiz 2, Exam
o Covers PO (b), (f) and SCLO (1), (2), (3)

7. Demonstrate that you are able to adapt a process to your needs and select an
appropriate set of best practices that will guide you in completing a software
development project.

o Instruments: Quiz 2, Assignment1, Exam
o Covers PO (b), (h) and SCLO (1), (2), (4), (5)

 3

TEACHING MODES
All course material will be provided on a course web site including lecture notes, useful
links on the web, recommended references, time schedule, and contact information for
faculty, guidelines for projects, coding standards, and more. The primary teaching mode
will be lecture and discussion.

COURSE REQUIREMENTS AND EXPECTATIONS

Policy on Attendance: Regular attendance in the class is mandatory. Students will be
responsible for any loss of information, assignments, and projects due to absence from
class.

Departmental Policy on Submission of Late Work: There will be no make-up for any
missed classes, projects, assignments, and exams. 1/2 letter grade off for assignment each
day late without documented excuse; papers more than one week late will not be
accepted.

Academic Integrity: Academic dishonesty includes plagiarism, cheating, and other illegal
or unethical behaviors in doing the work of the course. Plagiarism is the act of representing
another's ideas, words or information as one's own. If you receive assistance on an
assignment from someone else, you must avoid plagiarism by giving proper credit for this
assistance. Include in your assignment a comment naming the person who assisted you and
stating what the assistance was. Students who are guilty of academic dishonesty are subject
to severe penalties ranging from a reduction in points (and possible failure) for the
assignment/project, to failing the course, or in extreme cases, dismissal from the University.
Do not copy other student's projects, codes, and design. A group of students working
together on a project must change their forms and codes to differentiate from others.

EVALUATION: Following is the Evaluation system for the Final Grade. Each
assignment will be graded. Students are responsible for completing them as scheduled.

1. Two Assignments 20%
2. Quizzes (2) 10%
3. Mid-Term Exam 20%
4. Final Exam 20%
5. Final Project 30%

Final Project, Mid-term and Final exams are mandatory.
Assignments: One assignment given prior to the mid-term exam and one assignment
given after the mid-term exam.
Seminar (for undergraduate students) will involve attending the department seminar and
writing a two page essay on it. It will be 2% of the grade.

Final Project: The purpose of the course project is to provide the students with the
knowledge of software engineering methodology and the skills to apply it. The project

 4

consists of two iterations, both focused around the same software product. The first
iteration is exploratory and represents the first attempt at developing the proposed
software product. The second iteration is development and also includes revision of the
project goals. The deliverables for the first and second iteration are reports and demos.

GRADING: Academic dishonesty will result in grade F. The following grade scale will
be used:

90 % - 100% = A
80 % - 89% = B
70 % - 79% = C
60 % - 69% = D
0 - 59% = F

Final grades will be computed based upon credits earned for all the five components
mentioned above.

COURSE/TOPICAL OUTLINE

Week 1. Introduction: Ethics, ACM/IEEE code of ethics, professional software
development.

Week 2. Software processes: Process models, process activities, software design
activities, prototyping, RUP

Week 3. Agile software development: Plan-driven and agile development, extreme
programming, refactoring, scrum, scaling up and scaling out

Week 4. Requirements engineering: requirement types, functional and non-functional
requirements, requirements engineering processes and specification, elicitation and
analysis, requirement document and management

Week 5 & 6. System modeling: UML diagram types, aggregation, inheritance,
aggregation, composition, multiplicity, composition, generalization, association, context
models, interaction models, structural models, behavioral models, model-driven
engineering

Week 7. Architectural design: design decisions, abstraction, views, architectural patterns,
system quality attribute, and application

Week 8 & 9. Design and Implementation: Object-oriented design using the UML, design
patterns, implementation issues, open source development and licensing, object-oriented
design process, configuration management

Week 10 & 11. Software testing & Unit Testing: Test types, development testing, test-
driven development, release testing, user testing

 5

Week 12 & 13. Software Evolution, Dependability and Security: Evolution processes,
program evolution dynamics, software maintenance, reengineering, legacy system
management, security, risk management

Week 15. Object Oriented Design: objects, cohesion, coupling, data encapsulation,
abstraction, information hiding, polymorphism, dynamic binding.

Reminder: English Proficiency Examination
After successfully completing ENGL 101 and 102, Composition and Literature I and II,
students must take and successfully pass the Bowie State University English Proficiency
Examination. Transfer students who completed their English composition requirements
at another university should take the English Proficiency Examination during their first
semester of enrollment at Bowie State University.

ADA Statement:
Students with disabilities who wish to receive ADA accommodations should report to the
Office of Special Populations, Center for Learning and Technology (CLT) building, Suite
302 (301-860-3292).

Students who have a disability and want accommodations should report immediately to
Disability Support Services (DSS), located in Room 1328 in the Business and Graduate
Studies Building or call Mr. Michael S. Hughes, DSS Coordinator, at 301-860-4067.

SELECTED BIBLIOGRAPHICAL REFERENCES

1. Braude, Eric J. (2001). Software Engineering An Object-Oriented Perspective, John

Wiley & Sons, Inc., ISBN 0-471-32208-3.
2. Barnes D. J., and Kölling, M. (2003) Objects First With Java, Prentice Hall,ISBN 0-

13-044929-6.
3. Bruegge, B., and Dutoit, A. (2000). Object-Oriented Software Engineering

Conquering Complex and Changing Systems, Prentice-Hall, ISBN 0-13-489725-0.
4. Bruegge, B., and Dutoit, A. H. (2004). Object-Oriented Software Engineering: Using

UML, Patterns and Java, Second Edition, Prentice Hall, ISBN 0-13-0471100
5. David, K. (1998). The Art of Computer Programming, V. 1-3, 2nd ed. Boxed Set,

Addison-Wesley, ISBN: 0201485419.
6. Ghezzi, J., and Mandrioli, P. (1991). Fundamentals of Software Engineering by Hall.

